Course Code |
PHYS 4051 PHYS4051 |
科目名稱 |
Methods in
Theoretical Phys II 理論物理的分析方法(二) |
||||||||
教員 |
學 分 |
||||||||||
課程性質 |
PHYS 選修 |
同科其他選擇 |
|
||||||||
Workload |
l 非PAPER類HOMEWORK l MIDTERM l FINAL EXAM |
好重 |
|
||||||||
重 |
1 |
||||||||||
平均 |
|
||||||||||
輕 |
|
||||||||||
極輕 |
|
||||||||||
評價教學內容 |
#1 頭一半講complex analysis, 唔駛prove, 後一半講frobenius method 同 hypergeometric equation,要背書不過final唔難。Theory會用多啲,aim experimental phy 嘅可以唔駛reg |
||||||||||
評價教員教學 |
#1 friendly,新professor, 教學方式偏數學(真正嘅physics例子實在太難) |
||||||||||
CUSIS科目資料 |
Description: This course
provides students with the essential mathematical physics background needed
for carrying out postgraduate studies in physics. Topics include complex
analysis: analytic functions, Laurent series, Cauchy-Riemann conditions,
Residue Theorem and its applications; ordinary differential equations:
Frobenius method, singular points, hypergeometric ODE, Bessel equation and
Bessel functions; partial differential equations: eigenfunction expansions
and boundary-value problems; inhomogeneous ODE and PDE: Green’s function
method. Learning
Outcome: By the end of
the course, students will be able to: 1. master the basic concepts underlying
various methods in mathematical physics 2. acquire the skills to apply mathematical
physics methods in physics problems |
||||||||||
其他資料 |
2023Sem1:學位 50|註冊 19|剩餘 31 |
||||||||||
同學推薦 |
高度推薦 |
|
推薦 |
1 |
有保留 |
|
極有保留 |
|
沒有留言:
發佈留言