Course Code
|
ENGG 1410
ENGG1410
|
科目名稱
|
線性代數與向量微積分的工程應用
L Algebra &
V Calculus for Eng
|
||||||||
教員
|
學 分
|
||||||||||
課程性質
|
同科其他選擇
|
||||||||||
Workload
|
l MIDTERM
l FINAL EXAM
l 非PAPER類功課
|
好重
|
|||||||||
重
|
|||||||||||
平均
|
1
|
||||||||||
輕
|
|||||||||||
極輕
|
|||||||||||
評價教學內容
|
#1 =2個MATH course
|
||||||||||
評價教員教學
|
#1 一舊舊,問野有時唔識,notes經常出錯。take NG Chi Kong最好(利申:take左4個NG Chi Kong course)
|
||||||||||
CUSIS科目資料
|
Description:
Linear algebra:
matrices, matrix addition, matrix multiplication, inverses, special matrices;
vector spaces, basis and dimension, linear independence, rank, determinants;
linear transformations, projection, orthogonality, systems of linear
equations, Gaussian elimination; eigenvalues and eigenvectors. Vector
calculus: 3-D vector space and algebra; vector differential calculus,
gradient, divergence, curl; vector integral calculus, Green's theorem,
Gauss's theorem, Stoke's theorem.
Learning
Outcome:
1. Competent in understanding the roles and
connections between matrices and vectors, linear equation solving, linear
algebra and vector calculus
2. Able to formulate solutions to practical
applications in engineering and economics using mathematical skills
3. Able to use special matrices such as
triangular, diagonal, and orthogonal matrices
4. Able to understand Gauss elimination and
Gauss-Jordan method and their relationship with elementary matrices for
different types of matrix factorization and decomposition
5. Competent in using vectors and vector
space for interpreting matrix rank and the different solutions to linear
equations
6. Able to apply methods of vector calculus,
including Jacobian, divergence, Green’s and Stokes’ theorems
|
||||||||||
其他資料
|
2017Sem1:學位 150|註冊 122|剩餘28
|
||||||||||
同學推薦
|
高度推薦
|
推薦
|
有保留
|
極有保留
|
1
|
123
【更新進度】23-24 s1/s2/ss 科目列表已上傳。
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
ENGG 1410 線性代數與向量微積分的工程應用 L Algebra & V Calculus for Eng
訂閱:
發佈留言 (Atom)
沒有留言:
發佈留言