Course
Code
|
MATH 2230
MATH2230
|
科目名稱
|
Complex Variables with Applns 複變函數與應用
|
||||||||
教員
|
學 分
|
||||||||||
課程性質
|
MATH/Mathematics and Information Engineering必修
|
同科其他選擇
|
|
||||||||
Workload
|
l
非PAPER類HOMEWORK
l
TUTORIAL / PRESENTATION
l
MIDTERM
l
FINAL EXAM
|
好重
|
|
||||||||
重
|
|
||||||||||
平均
|
1
|
||||||||||
輕
|
|
||||||||||
極輕
|
|
||||||||||
評價教學內容
|
#1 個Course唔難
|
||||||||||
評價教員教學
|
#1 1999,Lecture完全冇用,第1次midterm出到Out syll然後話Sorry I didn’t check the syllabus,第2次midterm直頭將份卷個標題由Complex
Variables改埋做Complex Analysis,差唔多在場嘅同學全部都唔識做
上堂淨係識得Proof,啲Examples全部都係廢。
極力推薦戴浩民tutor,教得非常好
|
||||||||||
CUSIS科目資料
|
Description:
This course is to introduce the basic properties of complex
functions and analytic functions and to illustrate the important use of these
theories to other branches of mathematics and sciences. Topics include: complex numbers; limits,
continuity and derivatives, Cauchy-Riemann equations, analytic functions;
elementary functions; mapping by elementary functions; Contours integrals,
Cauchy-Goursat theorem, Cauchy integral formula, Morera’s theorem, maximum
moduli of functions, the fundamental theorem of algebra; Taylor series and
Laurent’s series; residues and poles, evaluation of infinite real integrals.
Learning Outcome:
Students are able to:
1. Define and recognize complex differentiable functions and
analytic functions.
2. State the basic properties of analytic functions and major
theories about these functions related to contour integration.
3. Work out the local properties at zeros or singularities of
analytic functions by series or integrals.
4. Apply residue theory to evaluate real integrals.
|
||||||||||
其他資料
|
2017Sem2:學位
50|註冊 40|剩餘
10
2017Sem2:學位
40|註冊 20|剩餘
20
2018Sem1:學位 50|註冊 23|剩餘 27 |
||||||||||
同學推薦
|
高度推薦
|
|
推薦
|
|
有保留
|
|
極有保留
|
1
|
|||
123
【更新進度】23-24 s1/s2/ss 科目列表已上傳。
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
MATH 2230 複變函數與應用 Complex Variables with Applns
訂閱:
發佈留言 (Atom)
沒有留言:
發佈留言