Course Code |
MATH 2060 MATH2060 |
科目名稱 |
Mathematical
Analysis II 數學分析(二) |
||||||||
教員 |
學 分 |
||||||||||
課程性質 |
數學系必修 |
同科其他選擇 |
|||||||||
Workload |
l 非PAPER類HOMEWORK l TUTORIAL / PRESENTATION l MIDTERM l FINAL EXAM |
好重 |
|
||||||||
重 |
|
||||||||||
平均 |
1 |
||||||||||
輕 |
|
||||||||||
極輕 |
|
||||||||||
評價教學內容 |
#1 好深,d tests 既題目好難,難到諗成日都諗唔到。數學系二年級讀既話都幾深,可能係咩年級讀都係好深 |
||||||||||
評價教員教學 |
#1 成日講近代數學發展史,好正 |
||||||||||
CUSIS科目資料 |
Description: This is a
continuation of MATH2050. Topics include: differentiability, mean-value
theorem, Taylor theorem, convexity; integrability, fundamental theorem of
calculus, improper integrals; power series, radius of convergence, series for
elementary functions; infinite series, convergence and divergence, rearrangement;
sequence and series of functions. Learning
Outcome: After taking
and passing this course a student will be able (1) to know the
properties of differential and convex functions, (2) to use
Darboux sums to study Riemann integrable functions and learn the Taylor
formula with remainder, (3) to
understand the fundamental theorems of calculus which relate integration to
differentiation, and (4) to know
basic tests for convergence of infinite series and functions, and (5) to know how
the elementary functions including the exponential, logarithmic, and
trigonometric functions are rigorously defined. In (1)-(3)
he/she should master those examples and counterexamples which illustrate the
applicability of various theorems. |
||||||||||
其他資料 |
2019Sem2:學位 50|註冊 41|剩餘 9 |
||||||||||
同學推薦 |
高度推薦 |
1 |
推薦 |
|
有保留 |
|
極有保留 |
|
123
【更新進度】23-24 s1/s2/ss 科目列表已上傳。
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
MATH 2060 數學分析(二) Mathematical Analysis II
訂閱:
發佈留言 (Atom)
沒有留言:
發佈留言