123

【更新進度】24-25 s1/s2/ss 科目列表已上傳。
【更新進度】24-25 s1/s2/ss 的科目評價已完成處理。
顯示包含「LIN Zhixiang」標籤的文章。顯示所有文章
顯示包含「LIN Zhixiang」標籤的文章。顯示所有文章

STAT 4001 數據挖掘及統計學習 Data Mining & Stat Learning

 

Course Code

STAT 4001

STAT4001

科目名稱

Data Mining & Stat Learning 數據挖掘及統計學習       

教員

Professor LIN Zhixiang

[官方介紹]

[學術著作]

學  分

 

課程性質

STAT選修 (Data Analytics Stream必修)

同科其他選

 

Workload

l   PAPERHOMEWORK

l   MIDTERM

l   FINAL EXAM

好重

 

 

平均

 

1

極輕

 

評價教學內容

#1教好多Statistical Learningalgorithm, Tutorial全部都係R examples, Homework偏難且冇答案, 建議R底差嘅同學唔好讀

評價教員教學

#1講嘢好悶

CUSIS科目資料

Description

This course covers the principles of data mining, exploratory analysis and visualization, as well as predictive modeling for complex data sets. It introduces modern tools for regression and classification for high-dimensional or ultra-high dimensional data from the perspective of statistical decision theory and makes comparison to traditional methods. Students are exposed to statistical principles, computational issues, and hands-on data analysis on high noise, observational data.

 

Learning Outcome

Upon completion of the course, students should be able to 

(1) use various statistical methods and techniques to summarize and present high-dimensional data; 

(2) build predictive models for complex data sets; 

(3) master the concepts of regularization, model selection, model averaging and ensemble learning; and 

(4) write R code and use R packages to solve real-world problems.

其他資料

2021Sem1:學位 87|註冊 83|剩餘 4

同學推薦

高度推薦

 

推薦

 

有保留

1

極有保留

 

STAT 4002 多元技巧及其商業應用 Multivariate Tech W/ Bus App

Course Code

STAT 4002

STAT4002

科目名稱

Multivariate Tech W/ Bus App 多元技巧及其商業應用       

教員

Professor LIN Zhixiang

[官方介紹]

[學術著作]

學  分

課程性質

STAT/RMSC/QFRM/QFIN系選修

同科其他選

 

Workload

l   PAPERHOMEWORK

l   MIDTERM

l   FINAL EXAM

好重

 

 

平均

 

1

極輕

 

評價教學內容

#1 Quite Interesting, 2019R2 有講Image PCA等比較現代而有趣嘅topic, 數學原理ok淺白但都要有basic matrix operation/probability and statistics概念

評價教員教學

#1 同一般stat course比起ok, 比較平舖直敘, assignment有趣而有用, tutorialexample which is good

CUSIS科目資料

Description

This course deals with multivariate statistical techniques and their applications in business. Topics are selected from multivariate normal distribution, analysis of means, profile analysis, MANOVA, partial correlation, multiple and canonical correlations, discriminant analysis, and principal components. The integrated use of these techniques in analysing business problems will be emphasized throughout the course.

 

Learning Outcome

(1) extend standard univariate techniques to their multivariate counterparts; 

(2) describe and interpret correlation structures; 

(3) perform and interpret multivariate techniques including principal component analysis, factor analysis, multivariate regression and discriminant analysis; and 

(4) analyze real data by appropriate techniques and software.

其他資料

2019Sem1:學位 70|註冊 67|剩餘 3

同學推薦

高度推薦

 

推薦

1

有保留

 

極有保留

 


1