Course Code |
STAT 3005 STAT3005 |
科目名稱 |
Nonparametric statistics 非參數統計 |
||||||||
教員 |
學 分 |
||||||||||
課程性質 |
統計系選修 |
同科其他選擇 |
|
||||||||
Workload |
l 非PAPER類HOMEWORK l MIDTERM l FINAL EXAM |
好重 |
|
||||||||
重 |
|
||||||||||
平均 |
1 |
||||||||||
輕 |
|
||||||||||
極輕 |
|
||||||||||
評價教學內容 |
#1 教嘅內容例如bootstrap,BD correlation,kde都幾有趣 assignment會教點樣處理uncleaned
dataset midterm同final會要你試吓用layman language解釋吓statistical concept 成個course到最後會學到很多嘢 |
||||||||||
評價教員教學 |
#1 lecturer超好人,lecture notes排版好好,亦有好多examples,上堂一定唔會悶 |
||||||||||
CUSIS科目資料 |
Description: This course
introduces a wide variety of nonparametric techniques for performing
statistical inference and prediction, emphasizing both conceptual foundations
and practical implementation. Basic theoretical justification is also
provided. The content covers three broad themes: (i) rank-type and order-type
methods for handling location, dispersion, correlation, distribution and
regression problems, (ii) resampling-type procedures for testing and
assessing precision, and (iii) smoothing-type techniques for estimation and
prediction. Topics include Wilcoxon signed-rank test, Mann-Whitney rank sum
test, Spearman’s rho, Kendall’s tau, Kruskal-Wallis test, Kolmogorov-Smirnov
test, bootstrapping, Jackknife, subsampling, permutation tests, kernel
method, k-nearest neighbour, tree-based method, classification, etc. Learning
Outcome: Upon finishing
the course, students are expected to 1.
appreciate
the beauty of nonparametric methods; 2.
apply a
wide variety of nonparametric techniques to perform inference and prediction; 3.
understand
the pros and cons of parametric and nonparametric methods; 4.
use
programming to perform nonparametric statistical analysis for real-life
problems; and 5.
master
the skills in deriving basic theoretical properties of nonparametric methods. |
||||||||||
其他資料 |
2020Sem1:學位 100|註冊 93|剩餘 7 |
||||||||||
同學推薦 |
高度推薦 |
1 |
推薦 |
|
有保留 |
|
極有保留 |
|
沒有留言:
發佈留言