Course
Code
|
CSCI 3220
CSCI3220
|
科目名稱
|
Algorithms for Bioinformatics 生物信息學中的算法
|
||||||||
教員
|
學 分
|
||||||||||
課程性質
|
|
同科其他選擇
|
|
||||||||
Workload
|
l
非PAPER類HOMEWORK
l
MIDTERM
l
FINAL EXAM
|
好重
|
|
||||||||
重
|
|
||||||||||
平均
|
1
|
||||||||||
輕
|
|
||||||||||
極輕
|
|
||||||||||
評價教學內容
|
#1主要都係教同考algorithm, 唔識bio去讀都得, 雖然都會講吓bio 上嘅應用.
Mid-term open notes, 但final close notes. 普遍exam題目都唔易, 需要好理解啲algorithm, 但相對佔分亦比assignment 少, 所以都合理 有部分topic 涉及statistics, 雖然佢都會重溫基本stat, 但建議之前都要少少stat知識 Assignment 有programming 嘅部份, 而且可以無限次submit 去system test |
||||||||||
評價教員教學
|
#1講解詳細 (所以最後教唔哂...), 而且所有lecture 錄音會upload
|
||||||||||
CUSIS科目資料
|
Description:
This course describes some algorithms commonly used in
contemporary bioinformatics. After a brief introduction to basic molecular
biology and genetics, four main topics will be covered with corresponding
lists of algorithms:
1. Sequence alignment and assembly: dynamic programming for
optimal sequence alignment, FASTA and BLAST for heuristic alignment of long
sequences, tree-based methods for multiple sequence alignment, suffix-tree,
suffix-array and Burrows-Wheeler Transform for short read alignment, and
algorithms based on de Bruijn graphs for sequence assembly
2. Statistical modeling: forward, backward, Viterbi and
Baum-Welch algorithms for hidden Markov models, Gibbs sampling for sequence
motif discovery, and Bayesian classifiers, logistic regression and
expectation-maximization for data classification and clustering
3. Phylogenetics: methods based on Jukes-Cantor and Kimura
models for divergence time estimation, maximum parsimony, UPGMA,
Neighbor-joining and maximum likelihood methods for phylogenetic tree
reconstruction.
4. High-throughput data analysis: Hierarchical clustering and
k-means for data clustering, and algorithms for selected problems such as
signal peak calling, detection of gene fusion, haplotype phasing.
Other topics such as RNA secondary structure prediction may also
be covered depending on the available time.
Learning Outcome:
At
the end of the course of studies, students will be able to
1. Explain the problems studied in both biological and computational terms. 2. Explain the details of the studied algorithms. 3. Apply the learned algorithms to solving both problems in bioinformatics and other domains. 4. Study new algorithms proposed for the same problems. 5. Understand contents of other classes in computational biology and bioinformatics. |
||||||||||
其他資料
|
2017Sem1:學位
55|註冊 49|剩餘
6
2018Sem1:學位
60|註冊 54|剩餘
6
|
||||||||||
同學推薦
|
高度推薦
|
|
推薦
|
1
|
有保留
|
|
極有保留
|
|
|||
123
【更新進度】23-24 s1/s2/ss 科目列表已上傳。
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
【更新進度】23-24 s1/s2/ss 的科目評價已更新。[2/7/2024]
CSCI 3220 生物信息學中的算法 Algorithms for Bioinformatics
訂閱:
發佈留言 (Atom)
沒有留言:
發佈留言